
lnternattonal Journal of Theoretical Physics, Vol. 21, Nos. 3/4, 1982

Physics and Computation ~

Tommaso Toffoli

MI T Laboratory for Computer Sctence, 545 Technology Square, Cambridge,
Massachm'etts 02139

Received May 6. 1981

Computing processes are ultimately abstractions of physical processes: thus, a
comprehensive theory of computation must reflect in a stylized way aspects of
the underlying physical world. On the other hand, physics itself may draw fresh
insights and productive methodological tools from looking at the world as an
ongoing computation. The lerm reformation mechanics seems appropriate for this
unified approach to physics and computation.

1. I N T R O D U C T I O N

C o m p u t a t i o n - - w h e t h e r by man or by m a c h i n e - - i s a physical activity.
If we want to compute more, faster, better , more efficiently, and more
intel l igently, we will have to learn more about nature. In a sense, nature has
been cont inua l ly comput ing the "nex t s tate" of the universe for bi l l ions of
years; all we have to d o - - a n d , actually, all we can d o - - i s "h i t ch a r ide" on
this huge ongoing computa t ion , and try to discover which parts of it happen

to go near to where we want.
This is not merely a p rob lem of appl ied physics or technology. To

develop a more fundamenta l under s t and ing of in format ion mechanics we
shall be asking new kinds of quest ions about n a t u r e - - p o s s i b l y extending

into new di rec t ions the very subject mat te r of physics.
C o m p a r e the act of pe r fo rming a compu ta t ion with that of per forming

a physical exper iment .
In a compu ta t i on (Figure 1) we have a cer tain selected por t ion f of the

physical universe, the computer . We star t f in specified initial condi t ions x

This research was supported by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Office of Naval Research under Contract No. N00014-75-
C-0661.

165
(XI20-7748 '82/04(X1-0165503 (X)/0 ' 1982 Plenum Publb, hing Corporation

166 Toffoli

Fig. 1. Structure of a computation, f is a portion of the physical world, x and v are,
respectively, initial and final conditions.

Fig. 2. Structure of a physical experiment, f is a portion of the physical world, x and v arc,
respectively, initial and final conditions.

(program and data); we let the machinery f run undisturbed for a certain
time; and then we look at its final conditions y, which we interpret as the
result of the computation.

Now, let's look at a physical experiment. Again, we have a certain
selected portion f of the physical universe, the experimental set-up. We
provide initial conditions x, we let f run for a certain time, and then we look
at its final conditions, y.

Think of intelligent beings viewing us from a faraway star. How could
they tell whether we are performing a computation or a physical experi-
ment? They cannot tell by what we do- - the re is no objective difference. The
difference is in our intentions, in our knowledge, in our expectations.

In a computation, we have decided that we know f , and that that
indeed is the transformation which we want to apply to x to get the result y.
We know f so well that we are confident we could predict its operation by
pencil-and-paper figuring. But then, every time we have an x and we want
to know the result y, instead of using pencil and paper we know we can let f
do the work.

In a physical experiment, we have put together f, but we are not sure of
how it works-- that ' s what we want to find out! By using f several times,
and comparing each time the output y with the input x, we hope to gain
some ability to predict f ' s behavior. And when we've gained enough
confidence in our predictions, we are no longer performing a phydcal
experiment--we've got a computer runningt It may not be the particular
computer we want for a certain application, but a computer it certainly is.

Thus, in a computation the unknown-- the thing we are curious
about-- is) , ; in an experiment, it's f. What actually happens is the same: it's
only what we are going to do with it that is different.

It's no wonder then that many of the issues that we face when we probe
the workings of nature at a very fine level of detail will reappear in some
disguise when we try to use the workings of nature at the same fine level of

Physics and Computation 167

detail, say, for computation. As theoretical physics had to evolve a new
language to deal with these issues, so too will theoretical computer science.

2. WHAT COMPUTATIONS? WHY COMPUTATION?

What circumstances are leading us to make these new demands on the
theory of computation? While the theory evolved as an abstract branch of
mathematics, now we are realizing that much of the computation that we
want to do is characterized by an important constraint: it must be carried
out either in partnership with or as a challenge to nature. Conventional
theories of computation model nature well enough to tell us what can be
computed, but not enough to tell us how best to compute.

And why such an urge to compute, why such a challenge? One could
beg the question by answering that these are built-in human traits, akin to
curiosity and will. I will argue that this curiosity and this will are humane as
well.

Substantially, there are four contexts in which we use computation.
1. Abstract problems. We may want to know the answer to an abstract

question: What is the 100th digit of 7r? Or, find an English word with seven
i 's in it.

2. Control. We may want to have a system capable of integrating in an
appropriate way signals from input devices with the action of output devices
("When you see a stop signal, step on the brake!"). We are so use to being
served by many marvelous systems of this kind that often we become aware
of them only through their failures: How come it takes two weeks for a
postcard to go from New York to Boston? Or, the kitchen is dirty. Has the

maid been taking a nap?
Fact is, we like to have servants--strong, intelligent, obedient, discreet.

There are so many things we want done but don't want to do ourselves.
Greece and Rome used slaves, to work in the mines or, say, to take
dictation. But we know it's not pleasant for a person to work in the mines,
and it's boring for a person to take dictation. A lot of computation goes into
process control; if we don't want to do it ourselves, we'll have to train some

bits of nature to do it for us.
3. Simulation. We may want to know the consequences of a given

situation: What will the weather be tomorrow? Or, how is the inflation rate
going to be affected by a tax cut of 10%? In this context, we would like to
have our own domesticated version of the world in a box, to play with and
do things to, and yet be able to say, Oops, I 'm sorry, I'll take it b ack - - I

didn't really mean it!
4. Optimization. Finally, we can insert context 3 into a goal-oriented

servo-loop, and ask questions like: Which is the best place to spend my

168 Toffoli

vacation this summer? Here, inslead of a direct problem (What will happen
in this situation?) we have what is called an " inverse" problem (In what
situations will such a thing happen?), which is usually much harder to solve
since it may involve an exhaustive search. To find the best solution, I have
to construct not one but innumerable toy w o r l d s - - o n e with me lying on the
beach in Spain, one with me climbing the Himalayas and maybe falling off
a cliff, one with me winning in Monte Carlo, or going bankrupt in Monte
Carlo. e t c . - - a n d select the one that maximizes my expectations.

In context 3, we "on ly" try to beat nature at its own game. We want to
make a weather that runs a little ahead of the real weather, an economy that
runs a little ahead of the real economy. Yet, what nature achieves with a
lavish outlay of resources - - sun , water, lightning, and thunder on a global
s ca l e - - the same things we want to safely model in our own room (we
already do a lot of this every day in our own mind), with much more limited
resources.

If this sounds like a tough proposition, look at context 4. There, we still
want to beat nature at its own game, but many times over. And we'd better
learn to do that well. For, nature has devised a wonderful scheme to get a
better thing out of a good thing; it's called Darwinian evolution. You start
with a "good thing," you make many more like it, only a bit different. If one
of these looks "bet ter" you keep it; the others, you throw away. It looks like
a splendid scheme, and it is, but it has a catch: all is well as long as the
things that get "'selected against" are bacteria or velocipede patents; but not
when it's things like you and me. I don ' t like to be in the test tube that gets
thrown away, and I assume that you don ' t like it either. Beyond a certain
level, the evolut ionary scheme's simplicity is bought at a huge p r i c e - - t ha t is,
untold suffering.

We want to know whether the future that we are making is good for us
to live in--before we are going to live in it. If we don ' t like it, we want to
make a different one. Until somebody comes up with a more brilliant
scheme, we will have to play the "muta t ion and selection" game with cars,
cities, TV shows, and social structures; shouldn ' t we at tempt to rehearse the
"selection" act with models, before putt ing real people on the scene?

In the long run, that 's what computa t ion (or thinking, if you want) is
about. We are going to need a lot of it.

3. W H Y P H Y S I C S ?

We all know that computa t ion is an "abs t rac t" process. Whether
embodied in flesh or metal, what counts is the p a t t e r n - - t h e "form," not the
"substance." We know that " 1 2 8 + 128=256" is essentially the same process

Physics and Computation 169

whether done in my head, or with pencil and paper, or on a hand calculator.
We've studied that with proper encoding and decoding all effective processes
can be reduced to the mill of Boolean algebra, to a network of "yes /no"
switches. The instruction set of an IBM/360 can be realized indifferently,
and isomorphically, by me with pencil and paper, by a hydraulic, pneu-
matic, electric, electronic, or neuronic computer. The physics of it doesn't
make any difference to the logic of a computation; it just affects certain
material aspects, such as speed, volume, and energy dissipation. Then, let
the technologist figure out the fastest, smallest, and most efficient physical
realization. What does theoretical computer science care about physics?

Well, for one, automata theory is much more closely tied to physics
than is usually recognized. The very axioms of computability and compu-
tation-complexity theory are a stylization of certain physical constraints, as
Turing and yon Neumann (the originators of the two "standard" paradigms
of computation, i.e., the Turing machine and the cellular automaton) were
well aware. And this is good precedent for a young mathematical discipline.
Other successful performers, such as geometry and differential equations,
owe much for their productive, independent career to a long apprenticeship
with nature.

Let's forget about history, and go back for a moment to context 2
(Control). It is true that any control task can be conceptually reduced to
two stages (Figure 3a), that is, interfacing, and abstract computation per-
formed by a single central processing unit. Thus, with proper interfacing
any control problem can be reduced to a mere programming problem, where
all we have to deal with is uniform, abstract symbols--rather than pulleys
and muscles, pipes and gages, or electrons and crystals.

But, having written the program, built a computer to run it, and
interfaced the computer to sensors and actuators, have we solved the
original problem? When we put a computer inside a mechanism, the
geometry and the physics of the computer cannot be neatly separated from
those of the mechanism itself. The computer's weight and bulk, its power
needs, the length of its wires become significant parameters of the mecha-
nism. The idealization of a computer as "pure logic" fails. I'll give an
example.

Biologists have discovered a curious fact. For a mollusk, the octopus
(Figure 3b) is a smart one. It has eyes comparable to ours, and is fairly good
at visual discrimination tasks--in other words, at remembering things it has
seen. The octopus is also very deft at manipulation tasks. Of course, you'll
say, it must be. What, with eight arms, all those suckers, and a virtually
infinite number of joints (or degrees of freedom, to use a technical word),
how can it help not be the best one-man-band around? Yet, for all of its
touching talents, the octopus is poor at remembering things it has touched.
How come?

170 Toffol i

IJNII"

... ~ 7 " 1 4 gE

I

Fig. 3. (a) Through a suitable interface, a Turing machine can carry out an',, control task. (b) A
typical example of a control task--the octopus.

Let's try to design an octopus according to the scheme of Figure 3a. We
want the octopus to remember visual patterns, right? In the r e t ina - - the
visual in ter face--we convert light stimuli to standard electrical signals, and
then we run wires from the retina to the central processing unit, that is, the
brain, as in Figure 4a (we may assume that there is plenty of memory space
in the b r a in - - t he details don't matter). Fortunately. the eyes are right next
to the brain, and so the wiring is easy. Now, we want the octopus to
remember touched shapes, that is, how it feels in its arms and suckers. Well,
we put a sensor on each little bit of arm and sucker, and from each sensor
we run a wire to the brain (Figure 4b). But this is not the octopus we
wanted. It 's a bursting ball of wires with little bits of octopus just barely
showing here and there!

In the real octopus, there just isn't enough room for all those wires.
And what size of brain would the octopus need for thorough, independent
control of the dynamics of a million jo in t s? - -We barely manage, with our
large brain, to control a few dozen. So, a compromise has to be reached: in
the octopus most control is delegated to tiny peripheral processors strung
along the eight arms, and the brain is never told what exactly the arms are
doing. No wonder it can't remember the shape of things touched!

You see what kind of reasons force abstract computation to come to
terms with physics in the context of process control.

Come, now!- -you ' l l s a y - - t h e octopus has to swim and hide in crevices:
it's clear it can' t carry around too many extra pounds of brain and wires.
But for Simulation and Optimization (contexts 3 and 4 above) we can make
a huge computer and put it in the basement. It doesn't have to move - - i t
just has to sit and think.

Physics and Computation 17l

Fit{. 4. (a) Wiring the retina (sensors) to the brain (central processing unit). (b) Wiring the
suckers, etc.. to the brain.

Here, we have a more fundamental problem. Computation dissipates
energy- - tha t is, turns high-grade energy into heat. The rate of heat removal
is essentially proportional to the free surface of the computer, while in
today's computers the rate of heat generation is proportional to the number
of switches, or gates, and thus to the computer 's polunze. If we make a
computer bigger and bigger by increasing its size in all directions, its volume
will increase much faster than its surface, heat removal will become inade-
quate, and the computer will fry. Well, then we will make it grow only in
two dimensions, keeping it fiat and thin. But then certain parts of the
computer will be so far away from others that even at the speed of light
signals will take an inordinate amount of time to make the trip. We lose

speed.
This is the single major limitation that high-performance computing

faces in the near future, and it's an enormous limitation. Can it be solved by
mere technologic ingenuity? No! As Landauer (1961) has made clear, the
dissipation of a well-defined amount of energy comes as an inescapable
physical consequence of certain very acts of symbolic manipulation. For
example, in any conceivable computer, clearing one bit of memory must be
accompanied by the dissipation of at least kT of energy (k is Boltzmann's
constant, T the absolute temperature),

Reversibility and Dissipation. Suppose we want to add two integers.
This is an irreversible operation. In fact, 5 + 3 = 8 : but also 4 + 4 - - 8 ,
7 + 1 = 8, etc. Thus, there are several sets of initial conditions ("5 and 32'
"4 and 42' etc.) that lead to the same final conditions ("8," in this case). On
the other hand, the laws of microscopical dynamics are presumed to be

172 Toffoli

strictly reversible: starting from distinct initial states one always arrives at
distinct final states (by the w a y - - I ' m convinced this is all there is to the
second law of thermodynamics). Thus, we have a mismatch between what
we'd like to do - - say , add two n u m b e r s - - a n d what nature is willing to do
for us. We cannot just add two numbers: something else must happen at the
same t ime- -or , better, will happen- -whe the r we like it or n o t - - t o preserve
reversibility.

An irreversible operation "erases" information. If we have "'5 and 3,"
with this information we can construct the result, "8." But if we have "8,"
that 's not enough to reconstruct the original data. It could have been "5 and
3," "4 and 4," etc. In adding the two numbers we have thrown away some
information. In ordinary computers, the information that at any stage of the
computat ion is erased from the mechanical modes (i.e., those degrees of
freedom in which symbols are encoded) is actually dumped into the thermal
modes - - the heat sink. But every time that we open the door from the
mechanical to the thermal modes to do some "garbage dumping," we have
to put up with the thermal modes throwing garbage at us, in the form of
noise (in microphysics, there are no one-way doors!). The thermal modes'
rotten eggs are of size kT; if we want to maintain our aplomb under this
barrage, the wares (and thus the refuse) of our trade must be bigger
(E > k T). Thence Landauer 's result.

To avoid energy dissipation, if we cannot change physics perhaps we
can change our ways of manipulating symbols. Can we do any useful
computat ion without destroying informat ion--wi thout producing thermal
garbage? In other words, can we make a reversible computer, and can a
reversible computer do everything that a conventional one can? The results
of Bennett (1973), Fredkin (see Fredkin and Toffoli, 1982), and Toffoli
(1977) show that this is in principle possible. Other obstacles may crop up
on the way, but at least one conceptual obstacle to nondissipative computa-
tion has been identified, and a bypass route indicated.

4. MYSTERIES OR M O N S T E R S ?

The medieval mapmaker, when he drew the sign HIC SUNT LEONES
("And here are wild beasts") really meant " I ' m sorry, I haven't been there:
how could I possibly know?"

Computer scientists tend to have a similar reaction to the many
mysteries that physics holds for them. With some thinking, almost anyone
can put together a few physical constants and a little dimensional analysis,
and come up with good-sounding names for lurking monsters: E = kT, the

Physics and Computation 173

"thermodynamical barrier to computation," or E : h / t , the "quantum
barrier," or E = mc 2, the "relativistic barrier." I 'm not saying that this is not
a good starting p o i n t - - b u t somebody must actually go out and look.
Landauer, for one, spent many years stalking the E : k T monster, and came
back with pictures full of detail. Now we know it actually exists, we know
where it lives and what it looks like; and Bennett, Fredkin, and Toffoli are
softly walking around i t - - they think they've found a way not to wake it up.

Today, Landauer (1982) is challenging us to come back with pictures of
the " E = h / t thing." Only direct witnesses, please! Where does it live? Does
it actually eat energy, etc.? We need good mapmakers willing to do their
own surveying.

If we find actual monsters on our way, we may have to stop and think,
and maybe we will realize that we didn't have to go through there after all.
Certain obstacles may be more a matter of definition or interpretation. We
all knew that the NAND gate is a universal computing primit ive--anything
that can be done with other primitives, the NAND gate can do. Yet, the
Fredkin gate (Fredkin and Toffoli, 1982) can do things that the NAND gate
can't. How come? What has changed? Who was wrong? No o n e - - I t ' s just
that "doing" things now means something a little different, and possibly a
little more interesting.

5. W H O ' S AFRAID OF THE BIG BAD REAL NUMBERS?

And now, let's confess some insecurity. We computer scientists turn to
physics to know what can and what cannot be done in the ways of
computing. Physicists listen, smile, give us answers; they are about to leave,
but then they stay for a while. They too seem glad to have somebody to talk
to. They like to buttonhole us on a number of issues that have been nagging
them.

How come, they say, differential equations don't seem to work so well
any more? How does it happen that we take a real number, throw away
most of it (when we put it in a fixed-size register), and yet get more or less
the right results? Are discrete systems just an earthly reflection of perfect
Platonic ideas - - the continuum systems? Or perhaps discrete systems are the
Platonic ones, and the continuum formalism is just a convenient way to
handle the "easy ones" of them?

Tell us a s to ry - - they a sk - - abou t synchronization, incompleteness,
universal constructors, algorithmic entropy. Tell us parables from informa-

tionland.
After all, what they inherited from yon Neumann was something for

grown-ups, i.e., a proof of the "impossibility of hidden variables" in
quantum mechanics; what we computer scientists inherited from yon

174 Toffoli

N e u m a n n was the universal-computing and -construct ing cellular automa-
t o n - - a parlor game. Yet, within a cellular au tomaton there is room for both
observers and observees under the same rules of the game. The system is
circularity proof: it keeps working no matter how (or whether) you care to
interpret it, even more, "beings" within a cellular au tomaton can set up
their own internal cel lular-automaton game, with exactly the same ru les - -
they can maintain that they completely unders tand their world. On the
other hand, the rules of quan tum mechanics tell us something of what one
part of the world looks like to the other part: they don ' t tell us what the
whole world might look like to an "outside viewer": they don ' t even help us
imagine such a view.

Is there a way we can put together the two halves of von N e u m a n n ' s
inheritance?

We can no longer treat the physicist as white-collar mechanic: Figure
this out for me, Fix this for me, Do this better for me. (" I know what I want
but don ' t want to get my hands dirty.") Because, even as we were getting
accustomed to the idea that " the world, down there, is ultimately some sort
of machine," they were beginning to suspect that " the world, down there,
must basically be some sort of computer !"

6. C O N C L U S I O N S

In the Age of Reason, mathematicians and physicists took great pride
in their ability to solve problems. More recent is the fashion (undoubtedly
stimulated by a number of bad encounters, such as Russel 's paradox or the
uncertainty principle) to prove that certain questions are unsolvable (cf.
G6del ' s proof and much work in computat ional complexity). Having veri-
fied some of our talents and digested some of our limits, we are in a better
position now to tackle certain problems that are not " 'solvable" or "' unsolv-
able." Rather, they are to some extent self-referential or circular (cf.
Hofs tadter (1979) and Dawkins (1976) for admirable presentations), and as
such they don ' t ask to be so lved - - they have to be unders tood and lived. In
nay opinion, " 'physical limits to computa t ion" and "computa t iona l models
of phys i c s " - - t he two poles of this con fe rence - - encompass one of the
deepest and most vital of these circular issues. To paraphrase Feynman
(1982) what else can we use to make our models of the world but pieces of
the world itself?

R E F E R E N C E S

Benncn, C. (1973)"'Logical reversibility of computation," IBM Journal ~[Research and
Det:elopment, 6, 525-532.

Dav,'kim,, R. (1976). The Selfish Gene, Oxford University Prcs:~, Nc;v York.

Physics and Computation 175

Fcynman, R. (1982) "Simulating physics with computers," lnternationalJoFtrttal of Theoretical
Physi~'.~, to appear.

Fredkin, E., and Toffoli, T, (I982). "Conservativc logic," lntert~alio~lu/Jourp~al of T]teoretieal
Phl'.~ics, 21, 219 (this issue).

Hofstadter, D. (1979). Gi)del, E,~<'her, BaJi, Vintage Books. New York.
Landaucr, R. (1961). "Irreversibility and heat generation in the computing process," IBM

./~mrnul ~[Research and Det:elopmellt, 5, 183- 19 I.
Landaucr, R. (1982). "Uncertainty principle and minimal energy dissipation in the computer,'"

h~ternational Jourmd of Theoretic'a/Phi'sits, 21,283 (this issue).
Toff~',[i, T. (1977). "Computation and construction universality of reversible cellular automata,"

.l~mrna/ ~*f Cr)mputer am/Sl 's tem ScieHt es, 15, 213-231.
Wheeler, J. (1982). "The computer and the univcrsc," httermztim~al J~mrm~l ,~/ fhe~retir

Phi'vips', tc~ appear.

